Physics First Mid-year exam Study guide

- > The midterm exam will include but not be limited to the following concepts, vocabulary and formulas. Be sure to review all vocabulary terms.
- You will be allowed to use your formula flipbook so be sure it is up to date.
- ➤ Get organized!! Look through your notebooks & binders to find information on the following topics. Past unit study guides, test corrections and quizzes are a great place to start, you can be sure you'll see similar problems on the exam. Review past notes/power-points, warm ups, rewrite notes, make flash cards etc. Text book sections in parentheses follow the topics below.

o Remember to bring:

- Calculator
- Formula flipbook
- Something to work on after the exam

Unit 00 - Introduction to Basic Science Skills

Essential Questions:

- What is a system?
- How should calculations be used to predict and determine the motion of an object?
- How should information from a position vs. time and velocity vs. time graph be used to predict and explain the motion of an object?

What is Physics (1.1)

- · Scale of a system
- · Be able to give an example of a system
- Scientific Method

Time & distance (1.2)

- Dimensional analysis
- Graphing
- · Distance vs. Time Graph
- English vs. Metric
- Qualitative vs. Quantitative

Speed formula (1.3)

- Speed
- · Units for Speed
- V = d/t

Acceleration (2.2)

- Acceleration
- Units for Acceleration
- $a = V_{\underbrace{t}} V_{\underbrace{t}}$

Graphs of Motion (2.4)

- Position vs. Time Graph
- · Velocity vs. Time Graph
- · Acceleration vs. Time Graph
- What does the slope or curve on each graph represent?
- What does the positive or negative represent on the graphs?

Essential Questions

- What conclusions can be drawn about the relationship between the net force on a macroscopic object, its mass, and its acceleration?
- How can we use Newton's second law to model the mathematical relationship between net force, mass, and acceleration of an object?
- How do Newton's first and third laws relate to the mathematical relationship represented in Newton's second law?

Newton's Laws

- First Law (2.1)
- Inertia
- Second Law (2.2)
- F=ma
- Weight
- F_{wt}=mg (p. 43-44)
- · Know the units for each of the variables
- Third Law (3,1)
- Action-reaction pairs and why they do not cancel each other out
- FBD
- F_{net} =ma
- F_{net}= F₁ + F₂

Unit 02 - Impulse/Momentum

Essential Questions

- How can conservation of momentum be used to predict the relationship between the motion of objects before and after a collision?
- How do momentum, force, and time relate to minimize the net force on a macroscopic object during a collision?

Momentum (3.1)

- P=mv
- Units for each variable
- · How momentum relates to inertia
- Be able to provide an example of momentum
- Law of Conservation of Momentum (3.1)

Impulse/Momentum Theorem

- Derived from Newton's second law
- · Relationship within formula
- Ft = m∆v or Ft=mv₂-mv₁
- Units for each variable
- Crumple Zone CCA