Topic Outline

The following is a list of the 7 major areas of Environmental Science tested on the APES exam along with the percentage of multiple choice questions asked in each area. Within each category is a listing of the subcategories for which you should have in-depth knowledge and understanding. Used correctly, this outline can function as a study guide and point out topics you may need to review.

Directions

To use this topic outline to its fullest, complete the following:

- 1. Look at each subtopic and determine whether or not you could write a short essay on the subtopic.
 - a. If you COULD write a short essay on the subtopic, use your pencil and draw a line through that subtopic.
 - b. If you COULD NOT write a short essay on the subtopic, highlight it!
 - c. See example below:

II. The Living World (10-15%)

- A. Natural Ecosystem Change: Biodiversity, Natural Selection, Evolution, Ecosystem Services
- B. Natural Biogeochemical Cycles: Carbon, Nitrogen, Phosphorus, Sulfur, Water, Conservation of Matter
- 2. Add up the number of subtopics which you did not know (the ones you highlighted).
 - a. In the example above, I DID NOT know enough information about Biodiversity, Nitrogen Cycle, and Sulfur Cycle. So, I had 1 for *Natural Ecosystem Change* and 2 for *Natural Biogeochemical Cycles*.
- 3. Whichever sections you knew the least about (had the highest numbers) are the ones you need to focus on the most when studying for the exam.
- 4. Lastly, pay attention to the total numbers and percentages for each category. For example if you missed 15 under the topic *The Living World*, but only missed 10 under the topic of *Pollution*, which should you spend more time studying? 25-30% of the exam is tested on *Pollution* while only 10-15% is on *The Living World*. Even though you know less about *The Living World*, it would be better to spend more time studying *Pollution*.

I. Earth Systems and Resources (10%–15%)

- A. Earth Science Concepts (Geologic time scale; plate tectonics, earthquakes, volcanism; seasons; solar intensity and latitude)
- B. The Atmosphere (Composition; structure; weather and climate; atmospheric circulation and the Coriolis effect; atmosphere-ocean interactions; ENSO)
- C. Global Water Resources and Use (Freshwater/saltwater; ocean circulation; agricultural, industrial, and domestic use; surface and groundwater issues; global problems; conservation)
- D. Soil and Soil Dynamics (Rock cycle; formation; composition; physical and chemical properties; main soil types; erosion and other soil problems; soil conservation)

II. The Living World (10%–15%)

- A. Ecosystem Structure (Biological populations and communities; ecological niches; interactions among species; keystone species; species diversity and edge effects; major terrestrial and aquatic biomes)
- B. Energy Flow (Photosynthesis and cellular respiration; food webs and trophic levels; ecological pyramids)
- C. Ecosystem Diversity (Biodiversity; natural selection; evolution; ecosystem services)
- D. Natural Ecosystem Change (Climate shifts; species movement; ecological succession)
- E. Natural Biogeochemical Cycles (Carbon, nitrogen, phosphorus, sulfur, water, conservation of matter)

III. Population (10%-15%)

- A. Population Biology Concepts (Population ecology; carrying capacity; reproductive strategies; survivorship)
- B. Human Population
 - I. Human population dynamics (Historical population sizes; distribution; fertility rates; growth rates and doubling times; demographic transition; age-structure diagrams)
 - II. Population size (Strategies for sustainability; case studies; national policies)
 - III. Impacts of population growth (Hunger; disease; economic effects; resource use; habitat destruction)

IV. Land and Water Use (10%-15%)

- A. Agriculture
 - I. Feeding a growing population (Human nutritional requirements; types of agriculture; Green Revolution; genetic engineering and crop production; deforestation; irrigation; sustainable agriculture)
 - II. Controlling pests (Types of pesticides; costs and benefits of pesticide use; integrated pest management; relevant laws)
- B. Forestry (Tree plantations; old growth forests; forest fires; forest management; national forests)
- C. Rangelands (Overgrazing; deforestation; desertification; rangeland management; federal rangelands)
- D. Other Land Use
 - I. Urban land development (Planned development; suburban sprawl; urbanization)
 - II. Transportation infrastructure (Federal highway system; canals and channels; roadless areas; ecosystem impacts)
 - III. Public and federal lands (Management; wilderness areas; national parks; wildlife refuges; forests; wetlands)
 - IV. Land conservation options (Preservation; remediation; mitigation; restoration)
 - V. Sustainable land-use strategies
- E. Mining (Mineral formation; extraction; global reserves; relevant laws and treaties)
- F. Fishing (Fishing techniques; overfishing; aquaculture; relevant laws and treaties)
- G. Global Economics (Globalization; World Bank; Tragedy of the Commons; relevant laws and treaties)

V. Energy Resources and Consumption (10%-15%)

- .. Energy Concepts (Energy forms; power; units; conversions; Laws of Thermodynamics)
- B. Energy Consumption
 - I. History (Industrial Revolution; exponential growth; energy crisis)
 - II. Present global energy use
 - III. Future energy needs
- C. Fossil Fuel Resources and Use (Formation of coal, oil, and natural gas; extraction/purification methods; world reserves and global demand; synfuels; environmental advantages/disadvantages of sources)
- D. Nuclear Energy (Nuclear fission process; nuclear fuel; electricity production; nuclear reactor types; environmental advantages/disadvantages; safety issues; radiation and human health; radioactive wastes; nuclear fusion)
- E. Hydroelectric Power (Dams; flood control; salmon; silting; other impacts)
- F. Energy Conservation (Energy efficiency; CAFE standards; hybrid electric vehicles; mass transit)
- G. Renewable Energy (Solar energy; solar electricity; hydrogen fuel cells; biomass; wind energy; small-scale hydroelectric; ocean waves and tidal energy; geothermal; environmental advantages/disadvantages)

VI. Pollution (25%-30%)

- A. Pollution Types
 - I. Air pollution (Sources Primary and secondary; major air pollutants; measurement units; smog; acid deposition causes and effects; heat islands and temperature inversions; indoor air pollution; remediation and reduction strategies; Clean Air Act and other relevant laws)
 - II. Noise pollution (Sources; effects; control measures)
 - III. Water pollution (Types; sources; causes. and effects; cultural eutrophication; groundwater pollution; maintaining water quality; water purification; sewage treatment/septic systems; Clean Water Act and other relevant laws)
 - IV. Solid waste (Types; disposal; reduction)
- B. Impacts on the Environment and Human Health
 - I. Hazards to human health (Environmental risk analysis; acute and chronic effects; dose-response relationships; air pollutants; smoking and other risks)
 - II. Hazardous chemicals in the environment (Types of hazardous waste; treatment/disposal of hazardous waste; cleanup of contaminated sites; biomagnifications; relevant laws)
- C. Economic Impacts (Cost-benefit analysis; externalities; marginal costs; sustainability)

VII. Global Change (10%-15%)

- A. Stratospheric Ozone (Formation of stratospheric ozone; ultraviolet radiation; causes of ozone depletion; effects of ozone depletion; strategies for reducing ozone depletion; relevant laws and treaties)
- B. Global Warming (Greenhouse gases and the greenhouse effect; impacts and consequences of global warming; reducing climate change; relevant laws and treaties)
- C. Loss of Biodiversity
 - I. Habitat loss; overuse; pollution; introduced species; endangered and extinct species
 - II. Maintenance through conservation
 - III. Relevant laws and treaties